sábado, 28 de dezembro de 2013

Especial de Sábado

Um pouco da História da Física

Borges e Nicolau

Pascal

Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662), matemático, físico e filósofo francês. Seus trabalhos em Matemática e Física foram notáveis. Criou, juntamente com Fermat, a teoria das probabilidades e, em 1642, inventou a máquina de calcular. 

Sua invenção, chamada de Pascaline era constituída de pequenas engrenagens rotativas montadas em eixos e executava automaticamente as operações de adição e subtração. 

Fez incursões muito significativas na Hidrostática. Estudou a transmissão de pressões pelos pontos dos líquidos, em 1653, e inventou a prensa hidráulica. 

Constatou que a pressão atmosférica diminui com o aumento da altitude, utilizando um barômetro, dispositivo inventado por Torricelli.  

Próximo sábado: Bernoulli.

Clique aqui para ver a biografia de Isaac Newton.
Clique aqui para ver a biografia de Nicolau Copérnico.
Clique aqui para ver a biografia de Galileu Galilei.

Clique aqui para ver a biografia de Robert Hooke.
Clique aqui para ver a biografia de Johannes Kepler.

Clique aqui para ver a biografia de Arquimedes.
Clique aqui para ver a biografia de Stevin.
Clique aqui para ver a biografia de Torricelli.

Clique aqui para voltar ao Blog

sábado, 21 de dezembro de 2013

Especial de Sábado

Um pouco da História da Física

Borges e Nicolau

Torricelli

Evangelista Torricelli, físico e matemático italiano, nasceu em 1608 em Faenza, comuna italiana da região Emilia-Romagna, província de Ravenna. A morte do pai ocorreu quando Torricelli era muito jovem e, por isso, ele foi educado por um tio. 

Em 1627 foi para Roma estudar ciências, sob a orientação do beneditino Benetto Castelli (1577-1644). Interessou-se pela obra de Galileu Galilei (1564-1642) e em 1641 escreveu um tratado sobre movimento, apresentando notáveis considerações a respeito da terceira jornada da obra “Discursos e Demonstrações Matemáticas acerca de Duas Novas Ciências”, de Galileu. 

Nesta terceira jornada são desenvolvidas as teorias sobre o movimento uniforme e sobre o movimento naturalmente acelerado. 

Torricelli tornou-se um dos principais discípulos do mestre florentino, assistindo-o nos três últimos meses de sua vida e sucedendo-o como matemático na corte de Florença. 

Embora conhecido pela equação que relaciona a velocidade de um corpo com a posição que ele ocupa, sem a necessidade de se saber o instante em que o corpo passa pela citada posição, Torricelli realizou inúmeros estudos em Matemática e Física.

Entre outros, estabeleceu a ideia de pressão atmosférica, inventou o barômetro e observou que a pressão atmosférica variava com a altitude. Torricelli faleceu em 1647, aos 39 anos de idade, na cidade de Florença, capital da região da Toscana.

Próximo sábado: Pascal.

Clique aqui para ver a biografia de Isaac Newton.
Clique aqui para ver a biografia de Nicolau Copérnico.
Clique aqui para ver a biografia de Galileu Galilei.

Clique aqui para ver a biografia de Robert Hooke.
Clique aqui para ver a biografia de Johannes Kepler.

Clique aqui para ver a biografia de Arquimedes.
Clique aqui para ver a biografia de Stevin.

Clique aqui para voltar ao Blog

quarta-feira, 18 de dezembro de 2013

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios básicos

Exercício 1: resolução

A força de atrito e a força normal resultam da interação entre partículas eletrizadas próximas. São, portanto, forças eletromagnéticas.

Resposta: c

x
Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios básicos

Exercício 2: resolução

Resposta:

B => I
C => I
D => II
A => IV
x
Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios básicos

Exercício 3: resolução

Coluna I: 0, 1, 2 e 4, verdadeiras; Coluna II: 3, falsa 
x
Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios básicos

Exercício 4: resolução

Resposta: a
x
Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios básicos

Exercício 5: resolução

Numa reação química há o envolvimento entre os elétrons e os núcleos atômicos eletrizados. Portanto, trata-se de uma manifestação de forças eletromagnéticas.

Resposta: c


Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios de Revisão

Revisão/Ex 1: resolução

A força normal e a força de tração são de origem eletromagnética.

Resposta: c

Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios de Revisão

Revisão/Ex 2: resolução

As nomenclaturas das quatro forças fundamentais da natureza, omitidas no texto são:

i) força nuclear forte,
ii) força nuclear fraca,
iii) força eletromagnética,
iv) força gravitacional.

Resposta: c

Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios de Revisão

Revisão/Ex 3: resolução

0: verdadeira
A força de interação entre massas é a força gravitacional

1: verdadeira
A força eletromagnética é a que existe entre partículas eletrizadas, englobando as forças elétricas e as forças magnéticas.

2: verdadeira
A força nuclear forte mantém a coesão do núcleo atômico e garante a união dos quarks para formarem os prótons e os nêutrons, assim como a ligação dos prótons entre si, equilibrando a força eletrostática repulsiva entre cargas de mesmo sinal.

3; Falsa
A força nuclear fraca tem intensidade menor  que a força eletromagnética.

4: verdadeira
A força gravitacional é  a menos intensa das quatro forças.

Verdadeiras (coluna I): 0, 1, 2 e 4
Falsa (coluna II): 3

Clique aqui para voltar ao Blog

Cursos do Blog - Eletricidade

20ª aula - 2º semestre - Última aula do ano
As forças fundamentais da Natureza
x
Borges e Nicolau
x
Exercícios de Revisão

Revisão/Ex 4: resolução

Numa reação química, há o envolvimento entre elétrons e núcleos atômicos eletrizados. Portanto, trata-se de uma manifestação de força eletromagnética.

Resposta: c

Clique aqui para voltar ao Blog

terça-feira, 17 de dezembro de 2013

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 1: resolução


L = 3.λ/2; λ = 2.L/3; f = 3.(v/2L)

  
L = 4.λ/2; λ = 2.L/4; f = 4.(v/2L)

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 2: resolução

a)

b)

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 3: resolução


λ/4 + λ/2 + λ/2 + λ/4 = L => λ = 2.L/3 e f = 3.v/2.L

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 4: resolução


λ/4 + λ/2 + λ/2 = L => λ = 4.L/5 e f = 5.v/4.L

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 5: resolução

Tubo aberto:


Tubo fechado:


Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Exercício 6: resolução


Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 1: resolução

a) Com a corda vibrando no seu modo fundamental, temos dois nós nas extremidades e um ventre. Logo,

λ/2 = L => λ/2 = 0,35 m => λ = 0,70 m
v = λ.f => v = 0,7.680 => v = 476 m/s

b) A frequência fundamental da onda sonora é a frequência fundamental de vibração da corda.

v = λ.f => 340 = λ.680 => λ = 0,50 m

Respostas; a) 476 m/s  b) 0,50 m

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 2: resolução

A) Correta. A propagação do som não ocorre no vácuo, isto é, só ocorre em um meio material.

B) Correta. O maior comprimento de onda possível corresponde ao modo mais simples de a corda vibrar, isto é a um nó em cada extremidade e entre eles um único ventre.



Sendo L ao comprimento da corda, obtemos: L = λ/2 => λ = 2L

C) Correta. De v = √(F/μ) => v2 = F/(m/L) => v2 = F.L/m

D) Incorreta. No tubo sonoro fechado temos sempre um ventre na embocadura e um nó na outra extremidade. O modo mais simples de vibração é representado abaixo:


Temos: L = λ/4 => λ = 4L

Resposta: d

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 3: resolução
(Vunesp)
fM = 2.fm => v
M/2L = 2.vm/2L => vM = 2.vm =>
(F/μM) = 2.(F/μm) = μm/μM = 4

Resposta: b

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios básicos

Revisão/Ex 4: resolução

fSol = (4/5).fSi => v
Sol/2L = (4/5).vSi/2L => vSol = (4/5).vSi =>
√(fSol/μ) = (4/5)√(fSi/μ) =>
fSol = (16/25).fSi

Resposta: b

Clique aqui para voltar ao Blog

Cursos do Blog - Termologia, Óptica e Ondas

20ª aula - 2º semestre (última)
Cordas vibrantes / Tubos sonoros

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 5: resolução

f = v/4L => f = 340/4.2,5.10-2 => f = 3,4.103 Hz

Resposta: 3,4.103 Hz

Clique aqui para voltar ao Blog

segunda-feira, 16 de dezembro de 2013

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios básicos
 

Exercício 1: resolução

a) MF = F.d = 10 N.2 m = 20 N.m
b) MFA = 0, pois a distância de A à linha de ação de fA é zero.

Clique aqui para voltar ao Blog 

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios básicos
 

Exercício 2: resolução

a)


b) Condições de equilíbrio:

1ª) FA + T = P  =>  FA + T = 90 (1)

2ª) Tomando o ponto A como referência:

MP  = MT  =>  90.2 = T.4  =>  T = 45 N

De (1): FA = 45 N

Clique aqui para voltar ao Blog 

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios básicos
 

Exercício 3: resolução

Tomando o ponto O como referência:


MPJ = MPM  =>  500.2 = PM.4  =>   PM = 250 N

Clique aqui para voltar ao Blog 

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios básicos
 

Exercício 4: resolução


Condições de equilíbrio:

1ª ) FA + T = P  =>  FA + T = 120 (1)

2ª) Tomando o ponto A como referência:

MP = MT  =>  120.3 = T.4  =>  T = 90 N
 

Mas o peso do bloco é igual à intensidade da força de tração no fio, isto é:

P = T = 90 N
 

De (1): FA = 30 N
 
Clique aqui para voltar ao Blog 

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios básicos
 

Exercício 5: resolução


Condições de equilíbrio:

1ª) YA + T.sen 30º = P + PB  =>  YA + T.(1/2) = 30 + 10 (1)
XA = T.cos 30º => XA  = T.(3/2) (2)

2ª) Tomando o ponto A como referência:

MP + MPB = MTsen30º  =>  30.3 + 10.6 = T.(1/2).4  =>  T = 75 N

De (1): YA = 2,5 N
De (2): XA = 37,5.3 N

Clique aqui para voltar ao Blog

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 1: resolução



Tomando o ponto P como referência e considerando que a soma dos momentos das forças que tendem a produzir rotação no sentido horário é igual à soma dos momentos das forças que tendem a produzir rotação no sentido anti-horário, temos:

Phaste.(L/2) + Mg.2L = M’g.L => M’ = 2M + Phaste/2g

Portanto, M’ > 2M

Resposta: d

Clique aqui para voltar ao Blog

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 2: resolução

Tomando a articulação  como referência e considerando que a soma dos momentos das forças que tendem a produzir rotação no sentido horário é igual à soma dos momentos das forças que tendem a produzir rotação no sentido anti-horário, temos:
  
Mg.L + mg.(L/2) = Kx.(L/2) => x = (2M+m).g/K

Resposta: d

Clique aqui para voltar ao Blog

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 3: resolução



mB.g.30 = mA.g.10 => mB = mA/3 = 15 gramas.
T = mA.g + mB.g = 60.g



T.20 = mC.g.30 => 60.g.20 = mC.g.30 => mC = 40 gramas

Resposta: d

Clique aqui para voltar ao Blog

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 4: resolução

A máxima distância que o jovem pode percorrer, medida a partir de B, sem que a prancha gire, corresponde ao instante em que a força normal em A torna-se nula.



Nestas condições, tomando o ponto B como referência e considerando que a soma dos momentos das forças que tendem a produzir rotação no sentido horário é igual à soma dos momentos das forças que tendem a produzir rotação no sentido anti-horário, temos:

Pprancha x 1,5 = Pjovem x d => 900 x 1,5 = 600 x d => d = 2,25 m

Resposta: c

Clique aqui para voltar ao Blog

Cursos do Blog - Mecânica

20ª aula - 2º semestre (última)
Equilíbrio Estático de um corpo extenso

Borges e Nicolau

Exercícios de Revisão

Revisão/Ex 5: resolução


Tomando o ponto A como referência:

MPplacaMPbarra = MT.senB => 200.8 + 100.4  = T.(6/10).8 => 
1600 + 400 = T.4,8 => T = 2000/4,8 => T = 416,66 N => T  417 N

Resposta: a

Clique aqui para voltar ao Blog

sábado, 14 de dezembro de 2013

Especial de Sábado

Um pouco da História da Física

Borges e Nicolau

Simon Stevin (1548–1620), matemático e engenheiro militar flamengo, nasceu em Bruges, Flandres (atualmente Bélgica). Dedicou-se ao estudo de diversos ramos das ciências destacando-se a Matemática, a Estática e a Hidrostática. Na Matemática, as principais contribuições de Stevin foram em relação à teoria das frações decimais aplicadas a atividades cotidianas, a noção de limite e os princípios do cálculo integral aplicado à Hidrostática. Em Estática , Stevin comprovou que três forças representadas em módulo e direção pelos lados de um triângulo se equilibram. Foi, em Hidrostática, o primeiro a explicar o paradoxo hidrostático, após a demonstração de que a pressão exercida por um líquido não depende da forma do recipiente e sim da altura da superfície livre do líquido.

Paradoxo hidrostático

Três recipientes, com mesma altura, são preenchidos com mesmo líquido. As áreas dos fundos dos recipientes são iguais. Embora as quantidades de líquido e, portanto, os pesos sejam diferentes, as forças no fundo dos três recipientes têm a mesma intensidade. A esse fato é costume chamar de paradoxo hidrostático.


Próximo sábado: Torricelli.

Clique aqui para ver a biografia de Isaac Newton.
Clique aqui para ver a biografia de Nicolau Copérnico.
Clique aqui para ver a biografia de Galileu Galilei.

Clique aqui para ver a biografia de Robert Hooke.
Clique aqui para ver a biografia de Johannes Kepler.

Clique aqui para ver a biografia de Arquimedes.

Clique aqui para voltar ao Blog