terça-feira, 24 de setembro de 2013

Cursos do Blog - Termologia, Óptica e Ondas

8ª aula - 2º semestre
Equação de Gauss. Aumento linear transversal

Borges e Nicolau

Exercícios básicos

Exercício 3: resolução

a) f = R/2 => f = 20/2 => f = 10 cm.

b) Sendo p’ = 30 cm e f = 10 cm, calculamos p pela equação de Gauss:

1/f = 1/p + 1/p’ => 1/10 = 1/p + 1/30 => 1/p = 1/10 - 1/30 =>
1/p = (3-1)/30 => p = 15 cm

c) O aumento linear transversal é dado por:
A = -p’/p => A = - 30/15 => A = - 2: a imagem é invertida e tem altura igual a duas vezes a altura do objeto.

Respostas: a) 10 cm; b) 15 cm; c) -2

Clique aqui para voltar ao Blog

Um comentário:

  1. tire-me uma dúvida , se a imagem é virtual o p' é negativo
    se o espelho é côncavo a distancia focal (f) é positiva
    então na equação de gauss , 1/p + 1/p' = 1/f pelo fato do p' ser negativo ele passa pra lá e fica sendo positivo ou estou errando alguma coisa ? então ficaria 1/p = 4/30 e p= 7,5
    oq justifica o fato da imagem estar do outro lado do espelho (virtual) sendo o espelho côncavo... pois a imagem tem q ficar entre o V e o F para ser virtual em um espelho côncavo sendo 15 ela estaria depois do F e entro o centro de curvatura então a mesma seria REAL INVERTIDA E MAIOR QUE O OBJETO. Ainda completando a letra C em conjunto estaria incompleta ou não ? pois na fórmula é -p' o p' já é negativo portanto o p' passaria a ser positivo e como 30/7,5 é 4 a imagem é 4x maior que o objeto.

    ResponderExcluir